An asymptotic of the negative discrete spectrum of the Schr\"odinger operator
Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 399-407.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Schrödinger operator $Hu=-\Delta u+V(x)u$, where $V(x)\to0$ as $|x|\to\infty$, is considered in $L_2(R^m)$ for $m\ge3$. The asymptotic formula $$ N(\lambda,V)\sim\gamma_m\int(\lambda-V(x))^{m/2}_+\,dx\quad\lambda\to-0. $$ is established for the number $N(\lambda,V)$ of the characteristic values of the operator $H$ which are less than $\lambda$. It is assumed about the potential $V$ that $V=V_0+V_1$; $V_00$, $|\nabla V_0|=o(|V_0|^{3/2})$ as $|x|\to\infty$; $\sigma(t/2,V_0)\le c\sigma(t,V_0)$ and $V_1\in L_{m/2,\operatorname{loc}}$, $\sigma(t,V_1)=o(\sigma(t,V_0))$, where $\sigma(t,f)=\operatorname{mes}\{x:|f(x)|>t\}$.
@article{MZM_1977_21_3_a11,
     author = {G. V. Rozenblum},
     title = {An asymptotic of the negative discrete spectrum of the {Schr\"odinger} operator},
     journal = {Matemati\v{c}eskie zametki},
     pages = {399--407},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a11/}
}
TY  - JOUR
AU  - G. V. Rozenblum
TI  - An asymptotic of the negative discrete spectrum of the Schr\"odinger operator
JO  - Matematičeskie zametki
PY  - 1977
SP  - 399
EP  - 407
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a11/
LA  - ru
ID  - MZM_1977_21_3_a11
ER  - 
%0 Journal Article
%A G. V. Rozenblum
%T An asymptotic of the negative discrete spectrum of the Schr\"odinger operator
%J Matematičeskie zametki
%D 1977
%P 399-407
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a11/
%G ru
%F MZM_1977_21_3_a11
G. V. Rozenblum. An asymptotic of the negative discrete spectrum of the Schr\"odinger operator. Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 399-407. http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a11/