Completeness of root vectors of a Keldysh pencil perturbed by an analytic operator-valued function $S(\lambda)$ with $S(\infty)=0$
Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 391-398
Cet article a éte moissonné depuis la source Math-Net.Ru
The multiple completeness of the root vectors of the pencil $$ L(\lambda)=I-T_0-\lambda T_1H-\dots-\lambda^{n-1}T_{n-1}H^{n-1}-\lambda^nH^n-S(\lambda), $$ where $I$ is the identity operator in the separable Hilbert space $\mathfrak H$, $S(\lambda)$ is an operator-valued function analytic for $|\lambda|>\eta$ with $S(\infty)=0$, and $T_k$ and $H$ are completely continuous operators, is studied. The method suggested in this note for proving the completeness does not use the factorization theorems, due to which we can remove certain restrictions on the function $S(\lambda)$ connected with the application of the factorization theorems.
@article{MZM_1977_21_3_a10,
author = {G. V. Radzievskii},
title = {Completeness of root vectors of a {Keldysh} pencil perturbed by an analytic operator-valued function $S(\lambda)$ with $S(\infty)=0$},
journal = {Matemati\v{c}eskie zametki},
pages = {391--398},
year = {1977},
volume = {21},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a10/}
}
TY - JOUR AU - G. V. Radzievskii TI - Completeness of root vectors of a Keldysh pencil perturbed by an analytic operator-valued function $S(\lambda)$ with $S(\infty)=0$ JO - Matematičeskie zametki PY - 1977 SP - 391 EP - 398 VL - 21 IS - 3 UR - http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a10/ LA - ru ID - MZM_1977_21_3_a10 ER -
%0 Journal Article %A G. V. Radzievskii %T Completeness of root vectors of a Keldysh pencil perturbed by an analytic operator-valued function $S(\lambda)$ with $S(\infty)=0$ %J Matematičeskie zametki %D 1977 %P 391-398 %V 21 %N 3 %U http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a10/ %G ru %F MZM_1977_21_3_a10
G. V. Radzievskii. Completeness of root vectors of a Keldysh pencil perturbed by an analytic operator-valued function $S(\lambda)$ with $S(\infty)=0$. Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 391-398. http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a10/