Asymptotics of the eigenvalues of the Dirichlet and Neumann problems for the abstract Sturm-Liouville operator
Matematičeskie zametki, Tome 21 (1977) no. 2, pp. 209-212
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $A>0$ be an unbounded self-adjoint operator in a Hilbert space $H$. In the Hilbert space $H_1=L_2(0,\pi;H)$ we study the spectrum of the differential equations
\begin{gather*}
-y''(x)+Ay=\lambda y,\quad y(0)=y(\pi)=0,
\\
-y''(x)+Ay=\lambda y,\quad y'(0)=y'(\pi)=0.
\end{gather*}
We find the principal terms of the asymptotics of the functions $N(\lambda)$ for these problems and we ascertain the conditions under which they are asymptotically not equivalent.
@article{MZM_1977_21_2_a8,
author = {M. M. Gekhtman},
title = {Asymptotics of the eigenvalues of the {Dirichlet} and {Neumann} problems for the abstract {Sturm-Liouville} operator},
journal = {Matemati\v{c}eskie zametki},
pages = {209--212},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a8/}
}
TY - JOUR AU - M. M. Gekhtman TI - Asymptotics of the eigenvalues of the Dirichlet and Neumann problems for the abstract Sturm-Liouville operator JO - Matematičeskie zametki PY - 1977 SP - 209 EP - 212 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a8/ LA - ru ID - MZM_1977_21_2_a8 ER -
M. M. Gekhtman. Asymptotics of the eigenvalues of the Dirichlet and Neumann problems for the abstract Sturm-Liouville operator. Matematičeskie zametki, Tome 21 (1977) no. 2, pp. 209-212. http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a8/