Asymptotics of the eigenvalues of the Dirichlet and Neumann problems for the abstract Sturm-Liouville operator
Matematičeskie zametki, Tome 21 (1977) no. 2, pp. 209-212.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A>0$ be an unbounded self-adjoint operator in a Hilbert space $H$. In the Hilbert space $H_1=L_2(0,\pi;H)$ we study the spectrum of the differential equations \begin{gather*} -y''(x)+Ay=\lambda y,\quad y(0)=y(\pi)=0, \\ -y''(x)+Ay=\lambda y,\quad y'(0)=y'(\pi)=0. \end{gather*} We find the principal terms of the asymptotics of the functions $N(\lambda)$ for these problems and we ascertain the conditions under which they are asymptotically not equivalent.
@article{MZM_1977_21_2_a8,
     author = {M. M. Gekhtman},
     title = {Asymptotics of the eigenvalues of the {Dirichlet} and {Neumann} problems for the abstract {Sturm-Liouville} operator},
     journal = {Matemati\v{c}eskie zametki},
     pages = {209--212},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a8/}
}
TY  - JOUR
AU  - M. M. Gekhtman
TI  - Asymptotics of the eigenvalues of the Dirichlet and Neumann problems for the abstract Sturm-Liouville operator
JO  - Matematičeskie zametki
PY  - 1977
SP  - 209
EP  - 212
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a8/
LA  - ru
ID  - MZM_1977_21_2_a8
ER  - 
%0 Journal Article
%A M. M. Gekhtman
%T Asymptotics of the eigenvalues of the Dirichlet and Neumann problems for the abstract Sturm-Liouville operator
%J Matematičeskie zametki
%D 1977
%P 209-212
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a8/
%G ru
%F MZM_1977_21_2_a8
M. M. Gekhtman. Asymptotics of the eigenvalues of the Dirichlet and Neumann problems for the abstract Sturm-Liouville operator. Matematičeskie zametki, Tome 21 (1977) no. 2, pp. 209-212. http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a8/