On sets admitting chebyshev vector systems
Matematičeskie zametki, Tome 21 (1977) no. 2, pp. 199-207
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the topological properties of compacta on which exist vector (with values in space $R^s$) systems of Chebyshev functions or systems having a given Chebyshev rank. The lengths of the systems are assumed to be multiples of but not equal to the number $s$. A compactum on which a Chebyshev system exists is embedded into space $R^s$. On polytopes of dimension $s+1$ the Chebyshev ranks of vector systems grow to infinity together with their length.
@article{MZM_1977_21_2_a7,
author = {Yu. A. Shashkin},
title = {On sets admitting chebyshev vector systems},
journal = {Matemati\v{c}eskie zametki},
pages = {199--207},
year = {1977},
volume = {21},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a7/}
}
Yu. A. Shashkin. On sets admitting chebyshev vector systems. Matematičeskie zametki, Tome 21 (1977) no. 2, pp. 199-207. http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a7/