On sets admitting chebyshev vector systems
Matematičeskie zametki, Tome 21 (1977) no. 2, pp. 199-207.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the topological properties of compacta on which exist vector (with values in space $R^s$) systems of Chebyshev functions or systems having a given Chebyshev rank. The lengths of the systems are assumed to be multiples of but not equal to the number $s$. A compactum on which a Chebyshev system exists is embedded into space $R^s$. On polytopes of dimension $s+1$ the Chebyshev ranks of vector systems grow to infinity together with their length.
@article{MZM_1977_21_2_a7,
     author = {Yu. A. Shashkin},
     title = {On sets admitting chebyshev vector systems},
     journal = {Matemati\v{c}eskie zametki},
     pages = {199--207},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a7/}
}
TY  - JOUR
AU  - Yu. A. Shashkin
TI  - On sets admitting chebyshev vector systems
JO  - Matematičeskie zametki
PY  - 1977
SP  - 199
EP  - 207
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a7/
LA  - ru
ID  - MZM_1977_21_2_a7
ER  - 
%0 Journal Article
%A Yu. A. Shashkin
%T On sets admitting chebyshev vector systems
%J Matematičeskie zametki
%D 1977
%P 199-207
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a7/
%G ru
%F MZM_1977_21_2_a7
Yu. A. Shashkin. On sets admitting chebyshev vector systems. Matematičeskie zametki, Tome 21 (1977) no. 2, pp. 199-207. http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a7/