On the uniqueness condition for the representation of functions by Walsh series
Matematičeskie zametki, Tome 21 (1977) no. 2, pp. 187-197.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that if we consider a set of positive integers of a specific arithmetic nature, then a uniqueness theorem holds for the series with respect to the Walsh system with partial sums convergent with respect to a subsequence of numbers from this set.
@article{MZM_1977_21_2_a6,
     author = {V. A. Skvortsov},
     title = {On the uniqueness condition for the representation of functions by {Walsh} series},
     journal = {Matemati\v{c}eskie zametki},
     pages = {187--197},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a6/}
}
TY  - JOUR
AU  - V. A. Skvortsov
TI  - On the uniqueness condition for the representation of functions by Walsh series
JO  - Matematičeskie zametki
PY  - 1977
SP  - 187
EP  - 197
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a6/
LA  - ru
ID  - MZM_1977_21_2_a6
ER  - 
%0 Journal Article
%A V. A. Skvortsov
%T On the uniqueness condition for the representation of functions by Walsh series
%J Matematičeskie zametki
%D 1977
%P 187-197
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a6/
%G ru
%F MZM_1977_21_2_a6
V. A. Skvortsov. On the uniqueness condition for the representation of functions by Walsh series. Matematičeskie zametki, Tome 21 (1977) no. 2, pp. 187-197. http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a6/