Certain linear differential operators and generalized differences
Matematičeskie zametki, Tome 21 (1977) no. 2, pp. 161-172
Cet article a éte moissonné depuis la source Math-Net.Ru
The solution of the problem of finding the quantity $$ \sup\limits_{|\Delta^ny_k|\le1}\inf\limits_{\substack{f(k)=y_k\\(k=0,\pm1,\pm2,\dots)}}\|f^{(n)}(x)\|_{C(-\infty,\infty)}, $$ obtained by Subbotin, is extended to the case of formally self-adjoint differential operators with constant coefficients and corresponding generalized differences.
@article{MZM_1977_21_2_a3,
author = {A. Sharma and I. Tsimbalario},
title = {Certain linear differential operators and generalized differences},
journal = {Matemati\v{c}eskie zametki},
pages = {161--172},
year = {1977},
volume = {21},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a3/}
}
A. Sharma; I. Tsimbalario. Certain linear differential operators and generalized differences. Matematičeskie zametki, Tome 21 (1977) no. 2, pp. 161-172. http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a3/