Some questions in the theory of inverse problems for differential operators
Matematičeskie zametki, Tome 21 (1977) no. 2, pp. 151-160.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the two operators $$ Ly=y^{(n)}+\sum_{k=0}^{n-2}p_k(x)y^{(k)}\quad\text{and}\quad Ry=y^{(n)}+\sum_{k=0}^{n-2}P_k(x)y^{(k)} $$ with a common set of boundary conditions we establish a connection between $p_k(x)$ and $\overline p_k(x)$ in the case where the weight numbers coincide and a finite number of the eigenvalues do not coincide, in terms of the eigenfunctions of these operators corresponding to the noncoincident eigenvalues and the derivatives of these functions. This enables us to recover the operator $L$ from the operator $R$ by solving a system of nonlinear ordinary differential equations. For Sturm–Liouville operators an analogous relation is proved for the case where infinitely many eigenvalues do not coincide.
@article{MZM_1977_21_2_a2,
     author = {V. A. Strakhov},
     title = {Some questions in the theory of inverse problems for differential operators},
     journal = {Matemati\v{c}eskie zametki},
     pages = {151--160},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a2/}
}
TY  - JOUR
AU  - V. A. Strakhov
TI  - Some questions in the theory of inverse problems for differential operators
JO  - Matematičeskie zametki
PY  - 1977
SP  - 151
EP  - 160
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a2/
LA  - ru
ID  - MZM_1977_21_2_a2
ER  - 
%0 Journal Article
%A V. A. Strakhov
%T Some questions in the theory of inverse problems for differential operators
%J Matematičeskie zametki
%D 1977
%P 151-160
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a2/
%G ru
%F MZM_1977_21_2_a2
V. A. Strakhov. Some questions in the theory of inverse problems for differential operators. Matematičeskie zametki, Tome 21 (1977) no. 2, pp. 151-160. http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a2/