On a~class of spaces of analytic functions
Matematičeskie zametki, Tome 21 (1977) no. 2, pp. 141-150
Voir la notice de l'article provenant de la source Math-Net.Ru
The spaces $B(p,q,\lambda)$ ($0$, $0\lambda\le\infty$) of functions, analytic in the circle $|z|1$, are introduced, and an unimprovable estimate is obtained for the Taylor coefficients of a function $f\in B(p,q,\lambda)$. It is shown that $B(p,q,\lambda)$ is the space of fractional derivatives $f^{(\alpha}$ of order $\alpha$ ($-\infty\alpha1/p-1/q$) of a function $f$ of $B(s,q,\lambda)$, where $s=p/(1-\alpha p)$.
@article{MZM_1977_21_2_a1,
author = {M. I. Gvaradze},
title = {On a~class of spaces of analytic functions},
journal = {Matemati\v{c}eskie zametki},
pages = {141--150},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a1/}
}
M. I. Gvaradze. On a~class of spaces of analytic functions. Matematičeskie zametki, Tome 21 (1977) no. 2, pp. 141-150. http://geodesic.mathdoc.fr/item/MZM_1977_21_2_a1/