Asymptotic formulas for the enumerator of trees with a~given number of hanging or internal vertices
Matematičeskie zametki, Tome 21 (1977) no. 1, pp. 65-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $t(r,n)$ be the number of trees with $n$ vertices of which $r$ are hanging and $q$ are internal ($r=n-q$). For a fixed $r$ or $q$ we prove the validity of the asymptotic formulas ($r>2$) \begin{gather*} t(r,n)\approx\frac1{r!(r-2)!}2^{2-r}n^{2r-4}\quad(n\to\infty), \\ t(n-q,n)\approx\frac1{q!(q-1)!}q^{q-2}n^{q-1}\quad(n\to\infty). \end{gather*} In the derivation of these formulas we do not use the expression for the enumerator of the trees with respect to the number of hanging vertices.
@article{MZM_1977_21_1_a7,
     author = {V. A. Voblyi},
     title = {Asymptotic formulas for the enumerator of trees with a~given number of hanging or internal vertices},
     journal = {Matemati\v{c}eskie zametki},
     pages = {65--70},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_1_a7/}
}
TY  - JOUR
AU  - V. A. Voblyi
TI  - Asymptotic formulas for the enumerator of trees with a~given number of hanging or internal vertices
JO  - Matematičeskie zametki
PY  - 1977
SP  - 65
EP  - 70
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_1_a7/
LA  - ru
ID  - MZM_1977_21_1_a7
ER  - 
%0 Journal Article
%A V. A. Voblyi
%T Asymptotic formulas for the enumerator of trees with a~given number of hanging or internal vertices
%J Matematičeskie zametki
%D 1977
%P 65-70
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_1_a7/
%G ru
%F MZM_1977_21_1_a7
V. A. Voblyi. Asymptotic formulas for the enumerator of trees with a~given number of hanging or internal vertices. Matematičeskie zametki, Tome 21 (1977) no. 1, pp. 65-70. http://geodesic.mathdoc.fr/item/MZM_1977_21_1_a7/