Computation of the $\varepsilon$ entropy of the space of continuous functions with the Hausdorff metric
Matematičeskie zametki, Tome 21 (1977) no. 1, pp. 39-50
Cet article a éte moissonné depuis la source Math-Net.Ru
The number $K_{p,q}$, i.e., the number of $(p,q)$ corridors of closed domains which are convex in the vertical direction, consist of elementary squares of the integral lattice, are situated within a rectangle of the size $q\times p$, and completely cover the side of length $p$ of this rectangle under projection is computed. The asymptotic $(K_{p,q}/q^2)^{1/p}\to\lambda$, as $p,q\to\infty$, where $\lambda=0,\!3644255\dots$ is the maximum root of the equation $_1F_1(-1/2-1/(16\lambda),1/2,1/(4\lambda))=0$, $_1F_1$ being the confluence hypergeometric function, is established. These results allow us to compute the $\varepsilon$ entropy of the space of continuous functions with the Hausdorff metric.
@article{MZM_1977_21_1_a4,
author = {A. A. Panov},
title = {Computation of the $\varepsilon$ entropy of the space of continuous functions with the {Hausdorff} metric},
journal = {Matemati\v{c}eskie zametki},
pages = {39--50},
year = {1977},
volume = {21},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_1_a4/}
}
A. A. Panov. Computation of the $\varepsilon$ entropy of the space of continuous functions with the Hausdorff metric. Matematičeskie zametki, Tome 21 (1977) no. 1, pp. 39-50. http://geodesic.mathdoc.fr/item/MZM_1977_21_1_a4/