Approximation of differentiable functions by functions of large smoothness
Matematičeskie zametki, Tome 21 (1977) no. 1, pp. 21-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

The order of the quantity $\delta(L)=\sup\limits_{x_1}\inf\limits_{x_2}\|x_1-x_2\|_{L_s[0,2\pi]}$ as $L\to\infty$ is studied for the classes of periodic functionsx $x_1\in\widetilde W_p^n(1)$, $x_1\in\widetilde W_q^n(L)$. Necessary and sufficient conditions under which the inequality $$ \|x^{(n)}\|_{L_p}\le C\|x\|_{L_q}^\alpha\|x^{(m)}\|_{L_s}^\beta $$ with the constant independent of $x$ holds for all periodic functions x(t) with $\int_0^{2\pi}x(t)\,dt=0$ and $x^{(m)}(t)\in L_s[0,2\pi]$ are found.
@article{MZM_1977_21_1_a2,
     author = {B. E. Klots},
     title = {Approximation of differentiable functions by functions of large smoothness},
     journal = {Matemati\v{c}eskie zametki},
     pages = {21--32},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_1_a2/}
}
TY  - JOUR
AU  - B. E. Klots
TI  - Approximation of differentiable functions by functions of large smoothness
JO  - Matematičeskie zametki
PY  - 1977
SP  - 21
EP  - 32
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_1_a2/
LA  - ru
ID  - MZM_1977_21_1_a2
ER  - 
%0 Journal Article
%A B. E. Klots
%T Approximation of differentiable functions by functions of large smoothness
%J Matematičeskie zametki
%D 1977
%P 21-32
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_1_a2/
%G ru
%F MZM_1977_21_1_a2
B. E. Klots. Approximation of differentiable functions by functions of large smoothness. Matematičeskie zametki, Tome 21 (1977) no. 1, pp. 21-32. http://geodesic.mathdoc.fr/item/MZM_1977_21_1_a2/