Movability relative to various classes of spaces
Matematičeskie zametki, Tome 21 (1977) no. 1, pp. 125-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is in answer to a question posed by K. Borsuk [1]. There exists a locally connected continuum $X$ which is movable relative to the class of all spheres, but which is not 2-movable. We shall prove that the classes $\EuScript K$ of movable compacta coincide for the following $\EuScript K$: 1) all polyhedra of dimension $\le n$, 2) all compacta of dimension $\le n$, and 3) gall compacta of fundamental dimension $\le n$. We shall also prove that the movability of a compactum $X$ is equivalent to its movability relative to the class of all polyhedra.
@article{MZM_1977_21_1_a14,
     author = {S. A. Bogatyi and V. A. Kalinin},
     title = {Movability relative to various classes of spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {125--132},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_1_a14/}
}
TY  - JOUR
AU  - S. A. Bogatyi
AU  - V. A. Kalinin
TI  - Movability relative to various classes of spaces
JO  - Matematičeskie zametki
PY  - 1977
SP  - 125
EP  - 132
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_1_a14/
LA  - ru
ID  - MZM_1977_21_1_a14
ER  - 
%0 Journal Article
%A S. A. Bogatyi
%A V. A. Kalinin
%T Movability relative to various classes of spaces
%J Matematičeskie zametki
%D 1977
%P 125-132
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_1_a14/
%G ru
%F MZM_1977_21_1_a14
S. A. Bogatyi; V. A. Kalinin. Movability relative to various classes of spaces. Matematičeskie zametki, Tome 21 (1977) no. 1, pp. 125-132. http://geodesic.mathdoc.fr/item/MZM_1977_21_1_a14/