Several theorems of combinatorial geometry
Matematičeskie zametki, Tome 21 (1977) no. 1, pp. 117-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

A set is said to be $H$-convex if it can be represented by an intersection of a family of closed half-spaces whose outer normals belong to a given subset of the set $H$ of the unit sphere $S^{n-1}\subset R$. On the basis of Helly's theorem for $H$-convex sets recently obtained by us, we prove in this note certain extensions of Blaschke's theorem (on the radius of an inscribed sphere) and of several other well-known theorems of combinatorial geometry.
@article{MZM_1977_21_1_a13,
     author = {V. G. Boltyanskii},
     title = {Several theorems of combinatorial geometry},
     journal = {Matemati\v{c}eskie zametki},
     pages = {117--124},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_1_a13/}
}
TY  - JOUR
AU  - V. G. Boltyanskii
TI  - Several theorems of combinatorial geometry
JO  - Matematičeskie zametki
PY  - 1977
SP  - 117
EP  - 124
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_1_a13/
LA  - ru
ID  - MZM_1977_21_1_a13
ER  - 
%0 Journal Article
%A V. G. Boltyanskii
%T Several theorems of combinatorial geometry
%J Matematičeskie zametki
%D 1977
%P 117-124
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_1_a13/
%G ru
%F MZM_1977_21_1_a13
V. G. Boltyanskii. Several theorems of combinatorial geometry. Matematičeskie zametki, Tome 21 (1977) no. 1, pp. 117-124. http://geodesic.mathdoc.fr/item/MZM_1977_21_1_a13/