On exact endomorphisms with a~quasi-invariant measure
Matematičeskie zametki, Tome 21 (1977) no. 1, pp. 99-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is proved that for any measurable partition $\xi$, $\xi\ne\varepsilon\pmod0$, of Lebesgue space with continuous measure that does not have elements of positive measure, there exists an exact endomorphism $T$ with a quasi-invariant measure for which $T^{-1}\varepsilon=\xi$.
@article{MZM_1977_21_1_a11,
     author = {V. G. Sharapov},
     title = {On exact endomorphisms with a~quasi-invariant measure},
     journal = {Matemati\v{c}eskie zametki},
     pages = {99--108},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_1_a11/}
}
TY  - JOUR
AU  - V. G. Sharapov
TI  - On exact endomorphisms with a~quasi-invariant measure
JO  - Matematičeskie zametki
PY  - 1977
SP  - 99
EP  - 108
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_1_a11/
LA  - ru
ID  - MZM_1977_21_1_a11
ER  - 
%0 Journal Article
%A V. G. Sharapov
%T On exact endomorphisms with a~quasi-invariant measure
%J Matematičeskie zametki
%D 1977
%P 99-108
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_1_a11/
%G ru
%F MZM_1977_21_1_a11
V. G. Sharapov. On exact endomorphisms with a~quasi-invariant measure. Matematičeskie zametki, Tome 21 (1977) no. 1, pp. 99-108. http://geodesic.mathdoc.fr/item/MZM_1977_21_1_a11/