On the representation of differentiations by Hamiltonians, operating from an algebra of local observable spin systems
Matematičeskie zametki, Tome 21 (1977) no. 1, pp. 93-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\overline{\mathfrak A}$ and $\mathfrak A$ be algebras of local and quasilocal observable spin systems corresponding to the group $Z^r$, $D:\mathfrak A\to\overline{\mathfrak A}$ be a differentiation invariant with respect to displacements. The question of representation of $D$ in the form of formal Hamiltonian $H=\sum_{k\in Z^r}T_kX$ formed by the displacements of an element $X\in\overline{\mathfrak A}$ is considered. It is shown that such a representation exists if the condition $\overline{\mathfrak A}$ holds, where $[H,a]\in\overline{\mathfrak A}$; $a\in\mathfrak A$ means an element obtained from the elements $[T_kX,a]$ by some $r$-multiple process of summation.
@article{MZM_1977_21_1_a10,
     author = {A. Ya. Helemskii},
     title = {On the representation of differentiations by {Hamiltonians,} operating from an algebra of local observable spin systems},
     journal = {Matemati\v{c}eskie zametki},
     pages = {93--98},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_1_a10/}
}
TY  - JOUR
AU  - A. Ya. Helemskii
TI  - On the representation of differentiations by Hamiltonians, operating from an algebra of local observable spin systems
JO  - Matematičeskie zametki
PY  - 1977
SP  - 93
EP  - 98
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_1_a10/
LA  - ru
ID  - MZM_1977_21_1_a10
ER  - 
%0 Journal Article
%A A. Ya. Helemskii
%T On the representation of differentiations by Hamiltonians, operating from an algebra of local observable spin systems
%J Matematičeskie zametki
%D 1977
%P 93-98
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_1_a10/
%G ru
%F MZM_1977_21_1_a10
A. Ya. Helemskii. On the representation of differentiations by Hamiltonians, operating from an algebra of local observable spin systems. Matematičeskie zametki, Tome 21 (1977) no. 1, pp. 93-98. http://geodesic.mathdoc.fr/item/MZM_1977_21_1_a10/