On the representation of differentiations by Hamiltonians, operating from an algebra of local observable spin systems
Matematičeskie zametki, Tome 21 (1977) no. 1, pp. 93-98
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\overline{\mathfrak A}$ and $\mathfrak A$ be algebras of local and quasilocal observable spin systems corresponding to the group $Z^r$, $D:\mathfrak A\to\overline{\mathfrak A}$ be a differentiation invariant with respect to displacements. The question of representation of $D$ in the form of formal Hamiltonian $H=\sum_{k\in Z^r}T_kX$ formed by the displacements of an element $X\in\overline{\mathfrak A}$ is considered. It is shown that such a representation exists if the condition $\overline{\mathfrak A}$ holds, where $[H,a]\in\overline{\mathfrak A}$; $a\in\mathfrak A$ means an element obtained from the elements $[T_kX,a]$ by some $r$-multiple process of summation.
@article{MZM_1977_21_1_a10,
author = {A. Ya. Helemskii},
title = {On the representation of differentiations by {Hamiltonians,} operating from an algebra of local observable spin systems},
journal = {Matemati\v{c}eskie zametki},
pages = {93--98},
year = {1977},
volume = {21},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_1_a10/}
}
TY - JOUR AU - A. Ya. Helemskii TI - On the representation of differentiations by Hamiltonians, operating from an algebra of local observable spin systems JO - Matematičeskie zametki PY - 1977 SP - 93 EP - 98 VL - 21 IS - 1 UR - http://geodesic.mathdoc.fr/item/MZM_1977_21_1_a10/ LA - ru ID - MZM_1977_21_1_a10 ER -
A. Ya. Helemskii. On the representation of differentiations by Hamiltonians, operating from an algebra of local observable spin systems. Matematičeskie zametki, Tome 21 (1977) no. 1, pp. 93-98. http://geodesic.mathdoc.fr/item/MZM_1977_21_1_a10/