FC groups whose periodic parts can be embedded in direct products of finite groups
Matematičeskie zametki, Tome 21 (1977) no. 1, pp. 9-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note are considered $FC$ groups whose periodic parts can be embedded in direct products of finite groups. It is shown that if the periodic part of an $FC$ group $G$ can be embedded in the direct product of its finite factor groups with respect to the normal subgroups of $G$ whose intersection is the trivial subgroup, then $G/Z(G)$ is a subgroup of a direct product of finite groups. It is also shown that if the periodic part of an $FC$ group $G$ is a group without a center, then $G$ can be embedded in a direct product of finite groups without centers and a torsion-free Abelian group.
@article{MZM_1977_21_1_a1,
     author = {L. A. Kurdachenko},
     title = {FC groups whose periodic parts can be embedded in direct products of finite groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {9--20},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_1_a1/}
}
TY  - JOUR
AU  - L. A. Kurdachenko
TI  - FC groups whose periodic parts can be embedded in direct products of finite groups
JO  - Matematičeskie zametki
PY  - 1977
SP  - 9
EP  - 20
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_1_a1/
LA  - ru
ID  - MZM_1977_21_1_a1
ER  - 
%0 Journal Article
%A L. A. Kurdachenko
%T FC groups whose periodic parts can be embedded in direct products of finite groups
%J Matematičeskie zametki
%D 1977
%P 9-20
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_1_a1/
%G ru
%F MZM_1977_21_1_a1
L. A. Kurdachenko. FC groups whose periodic parts can be embedded in direct products of finite groups. Matematičeskie zametki, Tome 21 (1977) no. 1, pp. 9-20. http://geodesic.mathdoc.fr/item/MZM_1977_21_1_a1/