A~new characterization of the Poisson distribution
Matematičeskie zametki, Tome 20 (1976) no. 6, pp. 879-882.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note we show that an infinitely divisible (i.d.) distribution function $F$ is Poisson if and only if it satisfies the conditions $F(+0)>0$, for any $0\varepsilon1$ $$ \int_{-\infty}^{1-\varepsilon}\frac{|x|}{1+|x|}\,dF=0, $$ and for any $0\alpha1$ $$ \int_0^\infty e^{\alpha x\ln(x+1)}\,dF\infty $$
@article{MZM_1976_20_6_a9,
     author = {V. M. Kruglov},
     title = {A~new characterization of the {Poisson} distribution},
     journal = {Matemati\v{c}eskie zametki},
     pages = {879--882},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_6_a9/}
}
TY  - JOUR
AU  - V. M. Kruglov
TI  - A~new characterization of the Poisson distribution
JO  - Matematičeskie zametki
PY  - 1976
SP  - 879
EP  - 882
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_20_6_a9/
LA  - ru
ID  - MZM_1976_20_6_a9
ER  - 
%0 Journal Article
%A V. M. Kruglov
%T A~new characterization of the Poisson distribution
%J Matematičeskie zametki
%D 1976
%P 879-882
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_20_6_a9/
%G ru
%F MZM_1976_20_6_a9
V. M. Kruglov. A~new characterization of the Poisson distribution. Matematičeskie zametki, Tome 20 (1976) no. 6, pp. 879-882. http://geodesic.mathdoc.fr/item/MZM_1976_20_6_a9/