The Euler–Jacobi equation in variational calculus
Matematičeskie zametki, Tome 20 (1976) no. 6, pp. 847-858 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The use of the method of the Euler–Jacobi equation is considered in the study of a quadratic functional defined on a cone. Such functionals occur in the variation of optimal-control problems. Several concepts are introduced with the aid of which the Euler–Jacobi equation is extended and the application of this method is justified also in the case that the equation is not a linear differential equation.
@article{MZM_1976_20_6_a6,
     author = {A. V. Dmitruk},
     title = {The {Euler{\textendash}Jacobi} equation in variational calculus},
     journal = {Matemati\v{c}eskie zametki},
     pages = {847--858},
     year = {1976},
     volume = {20},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_6_a6/}
}
TY  - JOUR
AU  - A. V. Dmitruk
TI  - The Euler–Jacobi equation in variational calculus
JO  - Matematičeskie zametki
PY  - 1976
SP  - 847
EP  - 858
VL  - 20
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_20_6_a6/
LA  - ru
ID  - MZM_1976_20_6_a6
ER  - 
%0 Journal Article
%A A. V. Dmitruk
%T The Euler–Jacobi equation in variational calculus
%J Matematičeskie zametki
%D 1976
%P 847-858
%V 20
%N 6
%U http://geodesic.mathdoc.fr/item/MZM_1976_20_6_a6/
%G ru
%F MZM_1976_20_6_a6
A. V. Dmitruk. The Euler–Jacobi equation in variational calculus. Matematičeskie zametki, Tome 20 (1976) no. 6, pp. 847-858. http://geodesic.mathdoc.fr/item/MZM_1976_20_6_a6/