The inclusion of certain classes of functions
Matematičeskie zametki, Tome 20 (1976) no. 6, pp. 835-841.

Voir la notice de l'article provenant de la source Math-Net.Ru

For any sequence $\{N_k\}$ with $\{N_k\}\downarrow0$ we find sharp theorems on the inclusion of the classes $\{f:f\in L(0,2\pi),\ E_k^{(1)}(f)=O(N_k)\}$, where $E_k^{(1)}(f)$ is the best approximation (in $L$) of $f$ by trigonometric polynomials of order no greater than $k$, in the class $L_\varphi(L)$ with slowly growing $\varphi$ and in the class $L^\nu$, $1\nu\infty$.
@article{MZM_1976_20_6_a4,
     author = {N. Temirgaliev},
     title = {The inclusion of certain classes of functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {835--841},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_6_a4/}
}
TY  - JOUR
AU  - N. Temirgaliev
TI  - The inclusion of certain classes of functions
JO  - Matematičeskie zametki
PY  - 1976
SP  - 835
EP  - 841
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_20_6_a4/
LA  - ru
ID  - MZM_1976_20_6_a4
ER  - 
%0 Journal Article
%A N. Temirgaliev
%T The inclusion of certain classes of functions
%J Matematičeskie zametki
%D 1976
%P 835-841
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_20_6_a4/
%G ru
%F MZM_1976_20_6_a4
N. Temirgaliev. The inclusion of certain classes of functions. Matematičeskie zametki, Tome 20 (1976) no. 6, pp. 835-841. http://geodesic.mathdoc.fr/item/MZM_1976_20_6_a4/