The inclusion of certain classes of functions
Matematičeskie zametki, Tome 20 (1976) no. 6, pp. 835-841
Cet article a éte moissonné depuis la source Math-Net.Ru
For any sequence $\{N_k\}$ with $\{N_k\}\downarrow0$ we find sharp theorems on the inclusion of the classes $\{f:f\in L(0,2\pi),\ E_k^{(1)}(f)=O(N_k)\}$, where $E_k^{(1)}(f)$ is the best approximation (in $L$) of $f$ by trigonometric polynomials of order no greater than $k$, in the class $L_\varphi(L)$ with slowly growing $\varphi$ and in the class $L^\nu$, $1<\nu<\infty$.
@article{MZM_1976_20_6_a4,
author = {N. Temirgaliev},
title = {The inclusion of certain classes of functions},
journal = {Matemati\v{c}eskie zametki},
pages = {835--841},
year = {1976},
volume = {20},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_6_a4/}
}
N. Temirgaliev. The inclusion of certain classes of functions. Matematičeskie zametki, Tome 20 (1976) no. 6, pp. 835-841. http://geodesic.mathdoc.fr/item/MZM_1976_20_6_a4/