The existence and uniqueness of a solution of Poisson's equation for generalized measures in an infinite-dimensional space
Matematičeskie zametki, Tome 20 (1976) no. 6, pp. 825-834
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that a solution of Poisson's equation in the space of generalized measures on an infinite-dimensional, separable Hilbert space exists and is unique. Any generalized function concentrated at a point in an infinite-dimensional Hilbert space is equal to zero.
@article{MZM_1976_20_6_a3,
author = {V. Yu. Bentkus},
title = {The existence and uniqueness of a~solution of {Poisson's} equation for generalized measures in an infinite-dimensional space},
journal = {Matemati\v{c}eskie zametki},
pages = {825--834},
year = {1976},
volume = {20},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_6_a3/}
}
TY - JOUR AU - V. Yu. Bentkus TI - The existence and uniqueness of a solution of Poisson's equation for generalized measures in an infinite-dimensional space JO - Matematičeskie zametki PY - 1976 SP - 825 EP - 834 VL - 20 IS - 6 UR - http://geodesic.mathdoc.fr/item/MZM_1976_20_6_a3/ LA - ru ID - MZM_1976_20_6_a3 ER -
V. Yu. Bentkus. The existence and uniqueness of a solution of Poisson's equation for generalized measures in an infinite-dimensional space. Matematičeskie zametki, Tome 20 (1976) no. 6, pp. 825-834. http://geodesic.mathdoc.fr/item/MZM_1976_20_6_a3/