Estimate of a multidimensional sum with the Legendre symbol for a polynomial of odd degree
Matematičeskie zametki, Tome 20 (1976) no. 6, pp. 815-824
Cet article a éte moissonné depuis la source Math-Net.Ru
The estimate $$ \Bigl|\sum_{x,1\dots,x_n\in F_q}\chi(f(x_1,\dots,x_n))\Bigr|\le(d-1)^nq^{n/2}. $$ is derived for the quadratic character Lambda of a field $F_q$ of $q$ elements and a polynomial $f$ of odd degree $d$ over $F_q$ under certain natural conditions.
@article{MZM_1976_20_6_a2,
author = {G. I. Perel'muter},
title = {Estimate of a~multidimensional sum with the {Legendre} symbol for a~polynomial of odd degree},
journal = {Matemati\v{c}eskie zametki},
pages = {815--824},
year = {1976},
volume = {20},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_6_a2/}
}
G. I. Perel'muter. Estimate of a multidimensional sum with the Legendre symbol for a polynomial of odd degree. Matematičeskie zametki, Tome 20 (1976) no. 6, pp. 815-824. http://geodesic.mathdoc.fr/item/MZM_1976_20_6_a2/