Torsion-free Abelian groups with cyclic $p$-basic subgroups
Matematičeskie zametki, Tome 20 (1976) no. 6, pp. 805-813.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the structure of indecomposable torsion-free Abelian groups all of whose $p$-basic subgroups are cyclic, and also the structure of the groups and rings of endomorphisms of such groups. We prove the existence of a torsion-free Abelian group of countable rank with cyclic $p$-basic subgroups which has no indecomposable nonzero direct summands.
@article{MZM_1976_20_6_a1,
     author = {P. A. Krylov},
     title = {Torsion-free {Abelian} groups with cyclic $p$-basic subgroups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {805--813},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_6_a1/}
}
TY  - JOUR
AU  - P. A. Krylov
TI  - Torsion-free Abelian groups with cyclic $p$-basic subgroups
JO  - Matematičeskie zametki
PY  - 1976
SP  - 805
EP  - 813
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_20_6_a1/
LA  - ru
ID  - MZM_1976_20_6_a1
ER  - 
%0 Journal Article
%A P. A. Krylov
%T Torsion-free Abelian groups with cyclic $p$-basic subgroups
%J Matematičeskie zametki
%D 1976
%P 805-813
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_20_6_a1/
%G ru
%F MZM_1976_20_6_a1
P. A. Krylov. Torsion-free Abelian groups with cyclic $p$-basic subgroups. Matematičeskie zametki, Tome 20 (1976) no. 6, pp. 805-813. http://geodesic.mathdoc.fr/item/MZM_1976_20_6_a1/