Lie algebras of homotopic groups of minimal Sullivan models
Matematičeskie zametki, Tome 20 (1976) no. 6, pp. 793-804.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with a minimal model, in the Sullivan sense, of a simply connected space, as well as with homotopic groups of models, and demonstrates that they form a graded Lie algebra. A theorem is proven on the isomorphism of this algebra and the tensor product of the classical Lie algebra of homotopic groups of space and the field of rationals.
@article{MZM_1976_20_6_a0,
     author = {I. K. Babenko},
     title = {Lie algebras of homotopic groups of minimal {Sullivan} models},
     journal = {Matemati\v{c}eskie zametki},
     pages = {793--804},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_6_a0/}
}
TY  - JOUR
AU  - I. K. Babenko
TI  - Lie algebras of homotopic groups of minimal Sullivan models
JO  - Matematičeskie zametki
PY  - 1976
SP  - 793
EP  - 804
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_20_6_a0/
LA  - ru
ID  - MZM_1976_20_6_a0
ER  - 
%0 Journal Article
%A I. K. Babenko
%T Lie algebras of homotopic groups of minimal Sullivan models
%J Matematičeskie zametki
%D 1976
%P 793-804
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_20_6_a0/
%G ru
%F MZM_1976_20_6_a0
I. K. Babenko. Lie algebras of homotopic groups of minimal Sullivan models. Matematičeskie zametki, Tome 20 (1976) no. 6, pp. 793-804. http://geodesic.mathdoc.fr/item/MZM_1976_20_6_a0/