Lie algebras of homotopic groups of minimal Sullivan models
Matematičeskie zametki, Tome 20 (1976) no. 6, pp. 793-804
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper deals with a minimal model, in the Sullivan sense, of a simply connected space, as well as with homotopic groups of models, and demonstrates that they form a graded Lie algebra. A theorem is proven on the isomorphism of this algebra and the tensor product of the classical Lie algebra of homotopic groups of space and the field of rationals.
@article{MZM_1976_20_6_a0,
author = {I. K. Babenko},
title = {Lie algebras of homotopic groups of minimal {Sullivan} models},
journal = {Matemati\v{c}eskie zametki},
pages = {793--804},
year = {1976},
volume = {20},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_6_a0/}
}
I. K. Babenko. Lie algebras of homotopic groups of minimal Sullivan models. Matematičeskie zametki, Tome 20 (1976) no. 6, pp. 793-804. http://geodesic.mathdoc.fr/item/MZM_1976_20_6_a0/