Self-conjugacy of abstract differential operators of the hyperbolic type
Matematičeskie zametki, Tome 20 (1976) no. 5, pp. 703-708.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions are obtained for the self-conjugacy of certain operators generated on a semiaxis or a complete axis by a differential expression of the form $l[y]=y''+ay-q(t)y$, where $A$ is a self-conjugate operator bounded below in a separable Hilbert space $H$, and, for almost all $t$, $q(t)$ is a bounded self-conjugate operator in $H$, locally summable with the square of the norm.
@article{MZM_1976_20_5_a8,
     author = {L. I. Vainerman},
     title = {Self-conjugacy of abstract differential operators of the hyperbolic type},
     journal = {Matemati\v{c}eskie zametki},
     pages = {703--708},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a8/}
}
TY  - JOUR
AU  - L. I. Vainerman
TI  - Self-conjugacy of abstract differential operators of the hyperbolic type
JO  - Matematičeskie zametki
PY  - 1976
SP  - 703
EP  - 708
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a8/
LA  - ru
ID  - MZM_1976_20_5_a8
ER  - 
%0 Journal Article
%A L. I. Vainerman
%T Self-conjugacy of abstract differential operators of the hyperbolic type
%J Matematičeskie zametki
%D 1976
%P 703-708
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a8/
%G ru
%F MZM_1976_20_5_a8
L. I. Vainerman. Self-conjugacy of abstract differential operators of the hyperbolic type. Matematičeskie zametki, Tome 20 (1976) no. 5, pp. 703-708. http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a8/