Self-conjugacy of abstract differential operators of the hyperbolic type
Matematičeskie zametki, Tome 20 (1976) no. 5, pp. 703-708
Cet article a éte moissonné depuis la source Math-Net.Ru
Sufficient conditions are obtained for the self-conjugacy of certain operators generated on a semiaxis or a complete axis by a differential expression of the form $l[y]=y''+ay-q(t)y$, where $A$ is a self-conjugate operator bounded below in a separable Hilbert space $H$, and, for almost all $t$, $q(t)$ is a bounded self-conjugate operator in $H$, locally summable with the square of the norm.
@article{MZM_1976_20_5_a8,
author = {L. I. Vainerman},
title = {Self-conjugacy of abstract differential operators of the hyperbolic type},
journal = {Matemati\v{c}eskie zametki},
pages = {703--708},
year = {1976},
volume = {20},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a8/}
}
L. I. Vainerman. Self-conjugacy of abstract differential operators of the hyperbolic type. Matematičeskie zametki, Tome 20 (1976) no. 5, pp. 703-708. http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a8/