Best approximation by splines on classes of periodic functions in the metric of $L$
Matematičeskie zametki, Tome 20 (1976) no. 5, pp. 655-664.

Voir la notice de l'article provenant de la source Math-Net.Ru

We have obtained the exact value of the upper bound on the best approximations in the metric of $L$ on the classes $W^rH^\omega$ of functions $f\in C_{2\pi}^r$ for which $|f^{(r)}(x')-f^{(r)}(x'')|\le\omega(|x'-x''|)$ [$\omega(t)$ is the upwards-convex modulus of continuity] by subspaces of $r$-th order polynomial splines of defect 1 with respect to the partitioning $k\pi/n$.
@article{MZM_1976_20_5_a3,
     author = {N. P. Korneichuk},
     title = {Best approximation by splines on classes of periodic functions in the metric of $L$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {655--664},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a3/}
}
TY  - JOUR
AU  - N. P. Korneichuk
TI  - Best approximation by splines on classes of periodic functions in the metric of $L$
JO  - Matematičeskie zametki
PY  - 1976
SP  - 655
EP  - 664
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a3/
LA  - ru
ID  - MZM_1976_20_5_a3
ER  - 
%0 Journal Article
%A N. P. Korneichuk
%T Best approximation by splines on classes of periodic functions in the metric of $L$
%J Matematičeskie zametki
%D 1976
%P 655-664
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a3/
%G ru
%F MZM_1976_20_5_a3
N. P. Korneichuk. Best approximation by splines on classes of periodic functions in the metric of $L$. Matematičeskie zametki, Tome 20 (1976) no. 5, pp. 655-664. http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a3/