Best approximation by splines on classes of periodic functions in the metric of $L$
Matematičeskie zametki, Tome 20 (1976) no. 5, pp. 655-664
Voir la notice de l'article provenant de la source Math-Net.Ru
We have obtained the exact value of the upper bound on the best approximations in the metric of $L$ on the classes $W^rH^\omega$ of functions $f\in C_{2\pi}^r$ for which $|f^{(r)}(x')-f^{(r)}(x'')|\le\omega(|x'-x''|)$ [$\omega(t)$ is the upwards-convex modulus of continuity] by subspaces of $r$-th order polynomial splines of defect 1 with respect to the partitioning $k\pi/n$.
@article{MZM_1976_20_5_a3,
author = {N. P. Korneichuk},
title = {Best approximation by splines on classes of periodic functions in the metric of $L$},
journal = {Matemati\v{c}eskie zametki},
pages = {655--664},
publisher = {mathdoc},
volume = {20},
number = {5},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a3/}
}
N. P. Korneichuk. Best approximation by splines on classes of periodic functions in the metric of $L$. Matematičeskie zametki, Tome 20 (1976) no. 5, pp. 655-664. http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a3/