Axiomatic theory of convexity
Matematičeskie zametki, Tome 20 (1976) no. 5, pp. 761-770.

Voir la notice de l'article provenant de la source Math-Net.Ru

The axiomatic construction of the theory of convexity proceeds from an arbitrary set $M$ and a mapping $l:M^2\to2^M$, i.e., from a pair $(M,l)$. It is shown that such a space of a certain type is domain finite. A condition is given which, for such spaces, implies join-hull commutativity. A connection is established between the Carathéodory number and join-hull commutativity. Conditions are given which imply a separation property of the space $(M,l)$. Convexity spaces which are domain finite are characterized.
@article{MZM_1976_20_5_a16,
     author = {V. V. Tuz},
     title = {Axiomatic theory of convexity},
     journal = {Matemati\v{c}eskie zametki},
     pages = {761--770},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a16/}
}
TY  - JOUR
AU  - V. V. Tuz
TI  - Axiomatic theory of convexity
JO  - Matematičeskie zametki
PY  - 1976
SP  - 761
EP  - 770
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a16/
LA  - ru
ID  - MZM_1976_20_5_a16
ER  - 
%0 Journal Article
%A V. V. Tuz
%T Axiomatic theory of convexity
%J Matematičeskie zametki
%D 1976
%P 761-770
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a16/
%G ru
%F MZM_1976_20_5_a16
V. V. Tuz. Axiomatic theory of convexity. Matematičeskie zametki, Tome 20 (1976) no. 5, pp. 761-770. http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a16/