Inversion of the oscillatory property of focusing operators
Matematičeskie zametki, Tome 20 (1976) no. 5, pp. 753-760.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $E$ is a real Banach space with a cone $K$ and suppose that the homogeneous additive operator $A$ that is positive on $K$ is focusing, i.e., $AK\subset K_{u_0\rho}$ for certain $u_0\in K$ and $\rho\ge1$. Then, as is well known, the operator $A$ uniformly reduces the oscillation (osc) between the elements of $K$. In this paper we show that only the focusing operators have this property.
@article{MZM_1976_20_5_a15,
     author = {Yu. V. Pokornyi and S. V. Smitskikh},
     title = {Inversion of the oscillatory property of focusing operators},
     journal = {Matemati\v{c}eskie zametki},
     pages = {753--760},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a15/}
}
TY  - JOUR
AU  - Yu. V. Pokornyi
AU  - S. V. Smitskikh
TI  - Inversion of the oscillatory property of focusing operators
JO  - Matematičeskie zametki
PY  - 1976
SP  - 753
EP  - 760
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a15/
LA  - ru
ID  - MZM_1976_20_5_a15
ER  - 
%0 Journal Article
%A Yu. V. Pokornyi
%A S. V. Smitskikh
%T Inversion of the oscillatory property of focusing operators
%J Matematičeskie zametki
%D 1976
%P 753-760
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a15/
%G ru
%F MZM_1976_20_5_a15
Yu. V. Pokornyi; S. V. Smitskikh. Inversion of the oscillatory property of focusing operators. Matematičeskie zametki, Tome 20 (1976) no. 5, pp. 753-760. http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a15/