$R^{(\infty)}$ is diffeomorphic to $R^{(\infty)}\setminus\{0\}$
Matematičeskie zametki, Tome 20 (1976) no. 5, pp. 741-746.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a one-to-one map of the topological direct sum $R^{(\infty)}$ of countably many copies of the real line onto $R^{(\infty)}\setminus\{0\}$ which is infinitely differentiable along with its inverse, in the sense of Michael–Bastiani.
@article{MZM_1976_20_5_a13,
     author = {A. A. Lobuzov},
     title = {$R^{(\infty)}$ is diffeomorphic to $R^{(\infty)}\setminus\{0\}$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {741--746},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a13/}
}
TY  - JOUR
AU  - A. A. Lobuzov
TI  - $R^{(\infty)}$ is diffeomorphic to $R^{(\infty)}\setminus\{0\}$
JO  - Matematičeskie zametki
PY  - 1976
SP  - 741
EP  - 746
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a13/
LA  - ru
ID  - MZM_1976_20_5_a13
ER  - 
%0 Journal Article
%A A. A. Lobuzov
%T $R^{(\infty)}$ is diffeomorphic to $R^{(\infty)}\setminus\{0\}$
%J Matematičeskie zametki
%D 1976
%P 741-746
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a13/
%G ru
%F MZM_1976_20_5_a13
A. A. Lobuzov. $R^{(\infty)}$ is diffeomorphic to $R^{(\infty)}\setminus\{0\}$. Matematičeskie zametki, Tome 20 (1976) no. 5, pp. 741-746. http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a13/