$R^{(\infty)}$ is diffeomorphic to $R^{(\infty)}\setminus\{0\}$
Matematičeskie zametki, Tome 20 (1976) no. 5, pp. 741-746
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct a one-to-one map of the topological direct sum $R^{(\infty)}$ of countably many copies of the real line onto $R^{(\infty)}\setminus\{0\}$ which is infinitely differentiable along with its inverse, in the sense of Michael–Bastiani.
@article{MZM_1976_20_5_a13,
author = {A. A. Lobuzov},
title = {$R^{(\infty)}$ is diffeomorphic to $R^{(\infty)}\setminus\{0\}$},
journal = {Matemati\v{c}eskie zametki},
pages = {741--746},
publisher = {mathdoc},
volume = {20},
number = {5},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a13/}
}
A. A. Lobuzov. $R^{(\infty)}$ is diffeomorphic to $R^{(\infty)}\setminus\{0\}$. Matematičeskie zametki, Tome 20 (1976) no. 5, pp. 741-746. http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a13/