Extension of linear functionals in Banach spaces of measurable functions
Matematičeskie zametki, Tome 20 (1976) no. 5, pp. 733-739
Cet article a éte moissonné depuis la source Math-Net.Ru
In this note the existence of an operator extending linear functionals from a subspace to the whole space is studied. It is shown that under certain conditions on the Banach lattice of measurable functions and on a suitable subspace, there exists a unique extension operator.
@article{MZM_1976_20_5_a12,
author = {M. Sh. Braverman and G. Ya. Lozanovskii},
title = {Extension of linear functionals in {Banach} spaces of measurable functions},
journal = {Matemati\v{c}eskie zametki},
pages = {733--739},
year = {1976},
volume = {20},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a12/}
}
M. Sh. Braverman; G. Ya. Lozanovskii. Extension of linear functionals in Banach spaces of measurable functions. Matematičeskie zametki, Tome 20 (1976) no. 5, pp. 733-739. http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a12/