Regularity of boundary points for linear equations of parabolic type
Matematičeskie zametki, Tome 20 (1976) no. 5, pp. 717-723.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers a second-order linear parabolic equation whose coefficients satisfy a Dini condition. It is proven that the conditions for regularity of the boundary points for such an equation and for the heat-conduction equation coincide.
@article{MZM_1976_20_5_a10,
     author = {I. T. Mamedov},
     title = {Regularity of boundary points for linear equations of parabolic type},
     journal = {Matemati\v{c}eskie zametki},
     pages = {717--723},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a10/}
}
TY  - JOUR
AU  - I. T. Mamedov
TI  - Regularity of boundary points for linear equations of parabolic type
JO  - Matematičeskie zametki
PY  - 1976
SP  - 717
EP  - 723
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a10/
LA  - ru
ID  - MZM_1976_20_5_a10
ER  - 
%0 Journal Article
%A I. T. Mamedov
%T Regularity of boundary points for linear equations of parabolic type
%J Matematičeskie zametki
%D 1976
%P 717-723
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a10/
%G ru
%F MZM_1976_20_5_a10
I. T. Mamedov. Regularity of boundary points for linear equations of parabolic type. Matematičeskie zametki, Tome 20 (1976) no. 5, pp. 717-723. http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a10/