Structure of $p$-adic Schottky groups
Matematičeskie zametki, Tome 20 (1976) no. 5, pp. 625-630.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arbitrary $p$-adic Schottky group $\Gamma$, we construct a set of generators $g_1,\dots,g_n$ with the following property: There exists a set of $2n$ circles $I_1,I_1',\dots,I_n,I_n'$ in the protective line with disjoint interiors, such that $g_i$ maps the exterior of $I_i$ onto the interior of $I_i'$, $i=1,\dots,n$.
@article{MZM_1976_20_5_a0,
     author = {N. G. Chebotarev},
     title = {Structure of $p$-adic {Schottky} groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {625--630},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a0/}
}
TY  - JOUR
AU  - N. G. Chebotarev
TI  - Structure of $p$-adic Schottky groups
JO  - Matematičeskie zametki
PY  - 1976
SP  - 625
EP  - 630
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a0/
LA  - ru
ID  - MZM_1976_20_5_a0
ER  - 
%0 Journal Article
%A N. G. Chebotarev
%T Structure of $p$-adic Schottky groups
%J Matematičeskie zametki
%D 1976
%P 625-630
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a0/
%G ru
%F MZM_1976_20_5_a0
N. G. Chebotarev. Structure of $p$-adic Schottky groups. Matematičeskie zametki, Tome 20 (1976) no. 5, pp. 625-630. http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a0/