Structure of $p$-adic Schottky groups
Matematičeskie zametki, Tome 20 (1976) no. 5, pp. 625-630
Voir la notice de l'article provenant de la source Math-Net.Ru
For an arbitrary $p$-adic Schottky group $\Gamma$, we construct a set of generators $g_1,\dots,g_n$ with the following property: There exists a set of $2n$ circles $I_1,I_1',\dots,I_n,I_n'$ in the protective line with disjoint interiors, such that $g_i$ maps the exterior of $I_i$ onto the interior of $I_i'$, $i=1,\dots,n$.
@article{MZM_1976_20_5_a0,
author = {N. G. Chebotarev},
title = {Structure of $p$-adic {Schottky} groups},
journal = {Matemati\v{c}eskie zametki},
pages = {625--630},
publisher = {mathdoc},
volume = {20},
number = {5},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a0/}
}
N. G. Chebotarev. Structure of $p$-adic Schottky groups. Matematičeskie zametki, Tome 20 (1976) no. 5, pp. 625-630. http://geodesic.mathdoc.fr/item/MZM_1976_20_5_a0/