A weight space invariant with respect to a singular linear operator
Matematičeskie zametki, Tome 20 (1976) no. 4, pp. 549-558 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the singular operator $$ S_u=\int_a^b\frac{K(x,s)u(s)}{s-x}\,ds $$ invariant weight spaces $\lambda_{\alpha,p}^\beta$ ($u(x)\in\lambda_{\alpha,p}^\beta$ if $1^0$. $u(x)\rho(x)\in H_\beta^0$, $2^0$. $\|u\|_{L_p(\rho_0)}<\infty$, $\rho(x)=(x-a)(b-x)^{1+\beta}$, $\rho_0(x)-(b-x)^{\alpha(p-1)}$, $0<\alpha$, $\beta<1$, $p>1$, $H_\beta^0$ is a Hölder space. Multiplicative inequalities of the type of Kh. Sh. Mukhtarov are also obtained.
@article{MZM_1976_20_4_a9,
     author = {A. Ya. Yakubov},
     title = {A~weight space invariant with respect to a~singular linear operator},
     journal = {Matemati\v{c}eskie zametki},
     pages = {549--558},
     year = {1976},
     volume = {20},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_4_a9/}
}
TY  - JOUR
AU  - A. Ya. Yakubov
TI  - A weight space invariant with respect to a singular linear operator
JO  - Matematičeskie zametki
PY  - 1976
SP  - 549
EP  - 558
VL  - 20
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_20_4_a9/
LA  - ru
ID  - MZM_1976_20_4_a9
ER  - 
%0 Journal Article
%A A. Ya. Yakubov
%T A weight space invariant with respect to a singular linear operator
%J Matematičeskie zametki
%D 1976
%P 549-558
%V 20
%N 4
%U http://geodesic.mathdoc.fr/item/MZM_1976_20_4_a9/
%G ru
%F MZM_1976_20_4_a9
A. Ya. Yakubov. A weight space invariant with respect to a singular linear operator. Matematičeskie zametki, Tome 20 (1976) no. 4, pp. 549-558. http://geodesic.mathdoc.fr/item/MZM_1976_20_4_a9/