Necessary convergence conditions for series $\sum a_nS_n$ in the case of identically distributed independent random quantities
Matematičeskie zametki, Tome 20 (1976) no. 4, pp. 529-536
Cet article a éte moissonné depuis la source Math-Net.Ru
Necessary (in some cases also sufficient) conditions are obtained for convergence of the series $\sum a_nS_n$ where $S_n=\sum_1^n\xi_k$, $\xi_k$ are independent random quantities. The cases in which $\xi_k$ are symmetrical or identically distributed quantities are investigated in more detail.
@article{MZM_1976_20_4_a7,
author = {V. F. Gaposhkin},
title = {Necessary convergence conditions for series $\sum a_nS_n$ in the case of identically distributed independent random quantities},
journal = {Matemati\v{c}eskie zametki},
pages = {529--536},
year = {1976},
volume = {20},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_4_a7/}
}
TY - JOUR AU - V. F. Gaposhkin TI - Necessary convergence conditions for series $\sum a_nS_n$ in the case of identically distributed independent random quantities JO - Matematičeskie zametki PY - 1976 SP - 529 EP - 536 VL - 20 IS - 4 UR - http://geodesic.mathdoc.fr/item/MZM_1976_20_4_a7/ LA - ru ID - MZM_1976_20_4_a7 ER -
%0 Journal Article %A V. F. Gaposhkin %T Necessary convergence conditions for series $\sum a_nS_n$ in the case of identically distributed independent random quantities %J Matematičeskie zametki %D 1976 %P 529-536 %V 20 %N 4 %U http://geodesic.mathdoc.fr/item/MZM_1976_20_4_a7/ %G ru %F MZM_1976_20_4_a7
V. F. Gaposhkin. Necessary convergence conditions for series $\sum a_nS_n$ in the case of identically distributed independent random quantities. Matematičeskie zametki, Tome 20 (1976) no. 4, pp. 529-536. http://geodesic.mathdoc.fr/item/MZM_1976_20_4_a7/