The extreme points of the unit ball of certain spaces of operators
Matematičeskie zametki, Tome 20 (1976) no. 4, pp. 521-527
Cet article a éte moissonné depuis la source Math-Net.Ru
In this note we discuss the set of extreme points of the unit ball of certain spaces of mappings. We prove that a mapping $T:E\to F'$ is an extreme point of the unit ball of the space $I(E,F')$ of integral mappings, if and only if it has the form $Tx=\langle x,a_0\rangle b_0$, where $a_0\in\operatorname{ext}S(E')$, $b_0\in\operatorname{ext}S(F')$
@article{MZM_1976_20_4_a6,
author = {I. I. Tseitlin},
title = {The extreme points of the unit ball of certain spaces of operators},
journal = {Matemati\v{c}eskie zametki},
pages = {521--527},
year = {1976},
volume = {20},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_4_a6/}
}
I. I. Tseitlin. The extreme points of the unit ball of certain spaces of operators. Matematičeskie zametki, Tome 20 (1976) no. 4, pp. 521-527. http://geodesic.mathdoc.fr/item/MZM_1976_20_4_a6/