Lorentz sequence spaces
Matematičeskie zametki, Tome 20 (1976) no. 4, pp. 501-510
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that the condition $$ \sup\limits_n\Bigl\{n^{1/2}\Bigl(\sum_{j\le n}c_j^2\Bigr)^{1/2}\Bigr/\sum_{j\le n}c_j\Bigr\}<\infty $$ on the normalizing sequence $\{c_j\}_{j<\infty}$ of the Lorentz sequence space $\Lambda(c)$ is a necessary and sufficient condition for having each bounded linear operator acting from an arbitrary $\mathscr L_\infty$-space into $\Lambda(c)$ be 2-absolutely summing.
@article{MZM_1976_20_4_a4,
author = {S. A. Rakov},
title = {Lorentz sequence spaces},
journal = {Matemati\v{c}eskie zametki},
pages = {501--510},
year = {1976},
volume = {20},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_4_a4/}
}
S. A. Rakov. Lorentz sequence spaces. Matematičeskie zametki, Tome 20 (1976) no. 4, pp. 501-510. http://geodesic.mathdoc.fr/item/MZM_1976_20_4_a4/