Upper bounds of topologies
Matematičeskie zametki, Tome 20 (1976) no. 4, pp. 489-500
Cet article a éte moissonné depuis la source Math-Net.Ru
The topology of a space $(X,\tau)$ homeomorphic to a non-$\sigma$-compact separable Borel set is equal to the upper bound of two topologies of the Hilbert cube. In particular, $(X,\tau)$ condenses to a compact space. The topology of a complete zero-dimensional metric space is the upper bound of two compact topologies. In particular, it dominates a compact Hausdorff topology.
@article{MZM_1976_20_4_a3,
author = {E. G. Pytkeev},
title = {Upper bounds of topologies},
journal = {Matemati\v{c}eskie zametki},
pages = {489--500},
year = {1976},
volume = {20},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_4_a3/}
}
E. G. Pytkeev. Upper bounds of topologies. Matematičeskie zametki, Tome 20 (1976) no. 4, pp. 489-500. http://geodesic.mathdoc.fr/item/MZM_1976_20_4_a3/