Upper bounds of topologies
Matematičeskie zametki, Tome 20 (1976) no. 4, pp. 489-500.

Voir la notice de l'article provenant de la source Math-Net.Ru

The topology of a space $(X,\tau)$ homeomorphic to a non-$\sigma$-compact separable Borel set is equal to the upper bound of two topologies of the Hilbert cube. In particular, $(X,\tau)$ condenses to a compact space. The topology of a complete zero-dimensional metric space is the upper bound of two compact topologies. In particular, it dominates a compact Hausdorff topology.
@article{MZM_1976_20_4_a3,
     author = {E. G. Pytkeev},
     title = {Upper bounds of topologies},
     journal = {Matemati\v{c}eskie zametki},
     pages = {489--500},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_4_a3/}
}
TY  - JOUR
AU  - E. G. Pytkeev
TI  - Upper bounds of topologies
JO  - Matematičeskie zametki
PY  - 1976
SP  - 489
EP  - 500
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_20_4_a3/
LA  - ru
ID  - MZM_1976_20_4_a3
ER  - 
%0 Journal Article
%A E. G. Pytkeev
%T Upper bounds of topologies
%J Matematičeskie zametki
%D 1976
%P 489-500
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_20_4_a3/
%G ru
%F MZM_1976_20_4_a3
E. G. Pytkeev. Upper bounds of topologies. Matematičeskie zametki, Tome 20 (1976) no. 4, pp. 489-500. http://geodesic.mathdoc.fr/item/MZM_1976_20_4_a3/