Standardness of automorphisms of transposition of intervals and fluxes on surfaces
Matematičeskie zametki, Tome 20 (1976) no. 4, pp. 479-488
Cet article a éte moissonné depuis la source Math-Net.Ru
In this article we shall prove a new necessary and sufficient condition for automorphisms to be standard, from which we shall deduce the standardness of an automorphism of transposition of intervals with respect to any continuous Borel invariant ergodic measure, and the standardness of the flux of the class $C^1$ on a two-dimensional compact variety with a finite number of stationary points and separatrices, with respect to any Borel invariant ergodic measure whose carrier contains an open set.
@article{MZM_1976_20_4_a2,
author = {A. B. Katok and E. A. Sataev},
title = {Standardness of automorphisms of transposition of intervals and fluxes on surfaces},
journal = {Matemati\v{c}eskie zametki},
pages = {479--488},
year = {1976},
volume = {20},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_4_a2/}
}
A. B. Katok; E. A. Sataev. Standardness of automorphisms of transposition of intervals and fluxes on surfaces. Matematičeskie zametki, Tome 20 (1976) no. 4, pp. 479-488. http://geodesic.mathdoc.fr/item/MZM_1976_20_4_a2/