The occurrence of an implication in finitely valid, intuitively improvable formulas of propositional logic
Matematičeskie zametki, Tome 20 (1976) no. 3, pp. 383-390.

Voir la notice de l'article provenant de la source Math-Net.Ru

Kabakov has proved that for the finite validity (in Medvedev's sense) of intuitively unprovable propositional formulas it is necessary that an implication occur in the premise $\beta$ or else in the inference $\gamma$ of some subformula of the type $(\beta\to\gamma)$, and, consequently, that at least two implications be present. Here we prove that every finitely valid, intuitively unprovable formula contains the occurrence of an implication necessarily in the premise $\beta$ of some subformula of the form $(\beta\to\gamma)$ and we also present an example of a similar formula containing exactly two implications.
@article{MZM_1976_20_3_a9,
     author = {D. P. Skvortsov},
     title = {The occurrence of an implication in finitely valid, intuitively improvable formulas of propositional logic},
     journal = {Matemati\v{c}eskie zametki},
     pages = {383--390},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_3_a9/}
}
TY  - JOUR
AU  - D. P. Skvortsov
TI  - The occurrence of an implication in finitely valid, intuitively improvable formulas of propositional logic
JO  - Matematičeskie zametki
PY  - 1976
SP  - 383
EP  - 390
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_20_3_a9/
LA  - ru
ID  - MZM_1976_20_3_a9
ER  - 
%0 Journal Article
%A D. P. Skvortsov
%T The occurrence of an implication in finitely valid, intuitively improvable formulas of propositional logic
%J Matematičeskie zametki
%D 1976
%P 383-390
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_20_3_a9/
%G ru
%F MZM_1976_20_3_a9
D. P. Skvortsov. The occurrence of an implication in finitely valid, intuitively improvable formulas of propositional logic. Matematičeskie zametki, Tome 20 (1976) no. 3, pp. 383-390. http://geodesic.mathdoc.fr/item/MZM_1976_20_3_a9/