The occurrence of an implication in finitely valid, intuitively improvable formulas of propositional logic
Matematičeskie zametki, Tome 20 (1976) no. 3, pp. 383-390
Voir la notice de l'article provenant de la source Math-Net.Ru
Kabakov has proved that for the finite validity (in Medvedev's sense) of intuitively unprovable propositional formulas it is necessary that an implication occur in the premise $\beta$ or else in the inference $\gamma$ of some subformula of the type $(\beta\to\gamma)$, and, consequently, that at least two implications be present. Here we prove that every finitely valid, intuitively unprovable formula contains the occurrence of an implication necessarily in the premise $\beta$ of some subformula of the form $(\beta\to\gamma)$ and we also present an example of a similar formula containing exactly two implications.
@article{MZM_1976_20_3_a9,
author = {D. P. Skvortsov},
title = {The occurrence of an implication in finitely valid, intuitively improvable formulas of propositional logic},
journal = {Matemati\v{c}eskie zametki},
pages = {383--390},
publisher = {mathdoc},
volume = {20},
number = {3},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_3_a9/}
}
TY - JOUR AU - D. P. Skvortsov TI - The occurrence of an implication in finitely valid, intuitively improvable formulas of propositional logic JO - Matematičeskie zametki PY - 1976 SP - 383 EP - 390 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1976_20_3_a9/ LA - ru ID - MZM_1976_20_3_a9 ER -
D. P. Skvortsov. The occurrence of an implication in finitely valid, intuitively improvable formulas of propositional logic. Matematičeskie zametki, Tome 20 (1976) no. 3, pp. 383-390. http://geodesic.mathdoc.fr/item/MZM_1976_20_3_a9/