Representation of solutions of linear partial differential equations in the form of finite sums
Matematičeskie zametki, Tome 20 (1976) no. 3, pp. 359-363
Voir la notice de l'article provenant de la source Math-Net.Ru
In this note we consider the problem of representing solutions of linear partial differential equations with two independent variables in the form of finite sums. We obtain one sufficient representability criterion and indicate several classes of equations to which it is applicable. As examples we obtain new exact solutions of the transformed minimal surface equation and the Tricomi equation.
@article{MZM_1976_20_3_a6,
author = {S. S. Titov},
title = {Representation of solutions of linear partial differential equations in the form of finite sums},
journal = {Matemati\v{c}eskie zametki},
pages = {359--363},
publisher = {mathdoc},
volume = {20},
number = {3},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_3_a6/}
}
TY - JOUR AU - S. S. Titov TI - Representation of solutions of linear partial differential equations in the form of finite sums JO - Matematičeskie zametki PY - 1976 SP - 359 EP - 363 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1976_20_3_a6/ LA - ru ID - MZM_1976_20_3_a6 ER -
S. S. Titov. Representation of solutions of linear partial differential equations in the form of finite sums. Matematičeskie zametki, Tome 20 (1976) no. 3, pp. 359-363. http://geodesic.mathdoc.fr/item/MZM_1976_20_3_a6/