Representation of solutions of linear partial differential equations in the form of finite sums
Matematičeskie zametki, Tome 20 (1976) no. 3, pp. 359-363.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note we consider the problem of representing solutions of linear partial differential equations with two independent variables in the form of finite sums. We obtain one sufficient representability criterion and indicate several classes of equations to which it is applicable. As examples we obtain new exact solutions of the transformed minimal surface equation and the Tricomi equation.
@article{MZM_1976_20_3_a6,
     author = {S. S. Titov},
     title = {Representation of solutions of linear partial differential equations in the form of finite sums},
     journal = {Matemati\v{c}eskie zametki},
     pages = {359--363},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_3_a6/}
}
TY  - JOUR
AU  - S. S. Titov
TI  - Representation of solutions of linear partial differential equations in the form of finite sums
JO  - Matematičeskie zametki
PY  - 1976
SP  - 359
EP  - 363
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_20_3_a6/
LA  - ru
ID  - MZM_1976_20_3_a6
ER  - 
%0 Journal Article
%A S. S. Titov
%T Representation of solutions of linear partial differential equations in the form of finite sums
%J Matematičeskie zametki
%D 1976
%P 359-363
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_20_3_a6/
%G ru
%F MZM_1976_20_3_a6
S. S. Titov. Representation of solutions of linear partial differential equations in the form of finite sums. Matematičeskie zametki, Tome 20 (1976) no. 3, pp. 359-363. http://geodesic.mathdoc.fr/item/MZM_1976_20_3_a6/