Asymptotic formulas for $n$-diameters of certain compacta in $L_2[0,1]$
Matematičeskie zametki, Tome 20 (1976) no. 3, pp. 331-340.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the current article the order of the Kolmogorov $n$-diameters of compacta, determined by the operators $$ Ly=p(x)\frac{dy}{dx}+q(x)y,\quad Ly=\Bigl[-\frac{d^2}{dx^2}+q(x)\frac d{dx}\Bigr]^ry $$ in $L_2[0,1]$ with a bound on the order of the error is studied and asymptotic formulas for $d_n$ as a function of $p(x)$, $g(x)$ and $r$ are derived.
@article{MZM_1976_20_3_a3,
     author = {Kh. Nasyrova},
     title = {Asymptotic formulas for $n$-diameters of certain compacta in $L_2[0,1]$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {331--340},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_3_a3/}
}
TY  - JOUR
AU  - Kh. Nasyrova
TI  - Asymptotic formulas for $n$-diameters of certain compacta in $L_2[0,1]$
JO  - Matematičeskie zametki
PY  - 1976
SP  - 331
EP  - 340
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_20_3_a3/
LA  - ru
ID  - MZM_1976_20_3_a3
ER  - 
%0 Journal Article
%A Kh. Nasyrova
%T Asymptotic formulas for $n$-diameters of certain compacta in $L_2[0,1]$
%J Matematičeskie zametki
%D 1976
%P 331-340
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_20_3_a3/
%G ru
%F MZM_1976_20_3_a3
Kh. Nasyrova. Asymptotic formulas for $n$-diameters of certain compacta in $L_2[0,1]$. Matematičeskie zametki, Tome 20 (1976) no. 3, pp. 331-340. http://geodesic.mathdoc.fr/item/MZM_1976_20_3_a3/