The integral representation of vector measures on a~completely regular space
Matematičeskie zametki, Tome 20 (1976) no. 3, pp. 401-408.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the vector space $C(X,E)$ of all bounded continuous functions from a completely regular space $X$ into a Banach space $E$. It is given a special locally convex topology $\xi$. We prove the analog of the Riesz–Markov theorem for the $\xi$-continuous linear operators which map $C(X,E)$ into a Banach space $F$.
@article{MZM_1976_20_3_a11,
     author = {O. E. Tsitritskii},
     title = {The integral representation of vector measures on a~completely regular space},
     journal = {Matemati\v{c}eskie zametki},
     pages = {401--408},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_3_a11/}
}
TY  - JOUR
AU  - O. E. Tsitritskii
TI  - The integral representation of vector measures on a~completely regular space
JO  - Matematičeskie zametki
PY  - 1976
SP  - 401
EP  - 408
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_20_3_a11/
LA  - ru
ID  - MZM_1976_20_3_a11
ER  - 
%0 Journal Article
%A O. E. Tsitritskii
%T The integral representation of vector measures on a~completely regular space
%J Matematičeskie zametki
%D 1976
%P 401-408
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_20_3_a11/
%G ru
%F MZM_1976_20_3_a11
O. E. Tsitritskii. The integral representation of vector measures on a~completely regular space. Matematičeskie zametki, Tome 20 (1976) no. 3, pp. 401-408. http://geodesic.mathdoc.fr/item/MZM_1976_20_3_a11/