The integral representation of vector measures on a~completely regular space
Matematičeskie zametki, Tome 20 (1976) no. 3, pp. 401-408
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the vector space $C(X,E)$ of all bounded continuous functions from a completely regular space $X$ into a Banach space $E$. It is given a special locally convex topology $\xi$. We prove the analog of the Riesz–Markov theorem for the $\xi$-continuous linear operators which map $C(X,E)$ into a Banach space $F$.
@article{MZM_1976_20_3_a11,
author = {O. E. Tsitritskii},
title = {The integral representation of vector measures on a~completely regular space},
journal = {Matemati\v{c}eskie zametki},
pages = {401--408},
publisher = {mathdoc},
volume = {20},
number = {3},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_3_a11/}
}
O. E. Tsitritskii. The integral representation of vector measures on a~completely regular space. Matematičeskie zametki, Tome 20 (1976) no. 3, pp. 401-408. http://geodesic.mathdoc.fr/item/MZM_1976_20_3_a11/