Some properties of the set of extreme points of the unit ball of a Banach space
Matematičeskie zametki, Tome 20 (1976) no. 3, pp. 315-320
Cet article a éte moissonné depuis la source Math-Net.Ru
In [1] it was proved that the unit ball of a reflexive Banach space has an uncountable set of extreme points. In this note it is shown that this set is also massive in some topological sense.
@article{MZM_1976_20_3_a1,
author = {M. I. Kadets and V. P. Fonf},
title = {Some properties of the set of extreme points of the unit ball of {a~Banach} space},
journal = {Matemati\v{c}eskie zametki},
pages = {315--320},
year = {1976},
volume = {20},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_3_a1/}
}
M. I. Kadets; V. P. Fonf. Some properties of the set of extreme points of the unit ball of a Banach space. Matematičeskie zametki, Tome 20 (1976) no. 3, pp. 315-320. http://geodesic.mathdoc.fr/item/MZM_1976_20_3_a1/