The Hardy-Littlewood theorem for the cosine series in a symmetric space
Matematičeskie zametki, Tome 20 (1976) no. 2, pp. 241-246.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a wide class of functional spaces we obtain a necessary and sufficient condition on a space that guarantees a Hardy–Littlewood type of assertion about whether the sum of a cosine series with monotonic coefficients belongs to a functional space, e.g., $L_p$ ($p>1$). As examples we consider Lorentz spaces, Marcinkiewicz spaces, Orlicz spaces, and $L_p$ spaces.
@article{MZM_1976_20_2_a8,
     author = {V. A. Rodin},
     title = {The {Hardy-Littlewood} theorem for the cosine series in a symmetric space},
     journal = {Matemati\v{c}eskie zametki},
     pages = {241--246},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_2_a8/}
}
TY  - JOUR
AU  - V. A. Rodin
TI  - The Hardy-Littlewood theorem for the cosine series in a symmetric space
JO  - Matematičeskie zametki
PY  - 1976
SP  - 241
EP  - 246
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_20_2_a8/
LA  - ru
ID  - MZM_1976_20_2_a8
ER  - 
%0 Journal Article
%A V. A. Rodin
%T The Hardy-Littlewood theorem for the cosine series in a symmetric space
%J Matematičeskie zametki
%D 1976
%P 241-246
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_20_2_a8/
%G ru
%F MZM_1976_20_2_a8
V. A. Rodin. The Hardy-Littlewood theorem for the cosine series in a symmetric space. Matematičeskie zametki, Tome 20 (1976) no. 2, pp. 241-246. http://geodesic.mathdoc.fr/item/MZM_1976_20_2_a8/