Estimates of linear combinations of near-exponential functions with positive and negative exponents
Matematičeskie zametki, Tome 20 (1976) no. 2, pp. 227-240
Voir la notice de l'article provenant de la source Math-Net.Ru
The functions
\begin{gather*} f_n(z)=e^{{\lambda_n}z}[1+\alpha_n(z)],\\ \varphi_n(z)=e^{{\mu_n}z}[1+\beta_n(z)]\qquad(n=1,2,\dots),
\end{gather*}
are considered, where $\lambda_n$ and $\mu_n$ are, respectively, the positive and negative zeros of some entire function of special type, while the functions $\alpha_n(z)$ and $\beta_n(z)$ are small in some sense. Estimates of a linear combination $P_1(z)$ of the functions $f_n(z)$ in the left half-plane, and of a linear combination $P_2(z)$ of functions $\varphi_n(z)$ in the right half-plane, are obtained in terms of the maximum modulus of $P_1(z)+P_2(z)$ in a segment of the imaginary axis.
@article{MZM_1976_20_2_a7,
author = {S. F. Prokoptsev},
title = {Estimates of linear combinations of near-exponential functions with positive and negative exponents},
journal = {Matemati\v{c}eskie zametki},
pages = {227--240},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_2_a7/}
}
TY - JOUR AU - S. F. Prokoptsev TI - Estimates of linear combinations of near-exponential functions with positive and negative exponents JO - Matematičeskie zametki PY - 1976 SP - 227 EP - 240 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1976_20_2_a7/ LA - ru ID - MZM_1976_20_2_a7 ER -
S. F. Prokoptsev. Estimates of linear combinations of near-exponential functions with positive and negative exponents. Matematičeskie zametki, Tome 20 (1976) no. 2, pp. 227-240. http://geodesic.mathdoc.fr/item/MZM_1976_20_2_a7/