Decomposability of modules into a direct sum of ideals
Matematičeskie zametki, Tome 20 (1976) no. 2, pp. 187-193.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that each left $R$ module is isomorphic to a direct sum of left ideals of the ring $R$ if and only if $R$ is quasi-Frobenius and generalized uniserial.
@article{MZM_1976_20_2_a2,
     author = {L. A. Skornyakov},
     title = {Decomposability of modules into a direct sum of ideals},
     journal = {Matemati\v{c}eskie zametki},
     pages = {187--193},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_2_a2/}
}
TY  - JOUR
AU  - L. A. Skornyakov
TI  - Decomposability of modules into a direct sum of ideals
JO  - Matematičeskie zametki
PY  - 1976
SP  - 187
EP  - 193
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_20_2_a2/
LA  - ru
ID  - MZM_1976_20_2_a2
ER  - 
%0 Journal Article
%A L. A. Skornyakov
%T Decomposability of modules into a direct sum of ideals
%J Matematičeskie zametki
%D 1976
%P 187-193
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_20_2_a2/
%G ru
%F MZM_1976_20_2_a2
L. A. Skornyakov. Decomposability of modules into a direct sum of ideals. Matematičeskie zametki, Tome 20 (1976) no. 2, pp. 187-193. http://geodesic.mathdoc.fr/item/MZM_1976_20_2_a2/