Rotation of potential vector fields
Matematičeskie zametki, Tome 20 (1976) no. 2, pp. 253-260.

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties are studied of the vector field of gradients of a functional defined on a reflexive space. The conditions of existence are presented of at least three stationary points of the functional.
@article{MZM_1976_20_2_a10,
     author = {V. S. Klimov},
     title = {Rotation of potential vector fields},
     journal = {Matemati\v{c}eskie zametki},
     pages = {253--260},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_2_a10/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - Rotation of potential vector fields
JO  - Matematičeskie zametki
PY  - 1976
SP  - 253
EP  - 260
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_20_2_a10/
LA  - ru
ID  - MZM_1976_20_2_a10
ER  - 
%0 Journal Article
%A V. S. Klimov
%T Rotation of potential vector fields
%J Matematičeskie zametki
%D 1976
%P 253-260
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_20_2_a10/
%G ru
%F MZM_1976_20_2_a10
V. S. Klimov. Rotation of potential vector fields. Matematičeskie zametki, Tome 20 (1976) no. 2, pp. 253-260. http://geodesic.mathdoc.fr/item/MZM_1976_20_2_a10/