Divergent Fourier series with respect to orthonormalized systems of smooth functions
Matematičeskie zametki, Tome 20 (1976) no. 1, pp. 69-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is proved that for any function $f\in L^2[-\pi;\pi]$, $\|f\|_2>0$, there exists a complete orthonormalized system of uniformly bounded trigonometric polynomials with respect to which the Fourier series of this function is divergent almost everywhere in the interval $[-\pi;\pi]$.
@article{MZM_1976_20_1_a7,
     author = {N. T. Anisimova},
     title = {Divergent {Fourier} series with respect to orthonormalized systems of smooth functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {69--78},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a7/}
}
TY  - JOUR
AU  - N. T. Anisimova
TI  - Divergent Fourier series with respect to orthonormalized systems of smooth functions
JO  - Matematičeskie zametki
PY  - 1976
SP  - 69
EP  - 78
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a7/
LA  - ru
ID  - MZM_1976_20_1_a7
ER  - 
%0 Journal Article
%A N. T. Anisimova
%T Divergent Fourier series with respect to orthonormalized systems of smooth functions
%J Matematičeskie zametki
%D 1976
%P 69-78
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a7/
%G ru
%F MZM_1976_20_1_a7
N. T. Anisimova. Divergent Fourier series with respect to orthonormalized systems of smooth functions. Matematičeskie zametki, Tome 20 (1976) no. 1, pp. 69-78. http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a7/