Divergent Fourier series with respect to orthonormalized systems of smooth functions
Matematičeskie zametki, Tome 20 (1976) no. 1, pp. 69-78
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper it is proved that for any function $f\in L^2[-\pi;\pi]$, $\|f\|_2>0$, there exists a complete orthonormalized system of uniformly bounded trigonometric polynomials with respect to which the Fourier series of this function is divergent almost everywhere in the interval $[-\pi;\pi]$.
@article{MZM_1976_20_1_a7,
author = {N. T. Anisimova},
title = {Divergent {Fourier} series with respect to orthonormalized systems of smooth functions},
journal = {Matemati\v{c}eskie zametki},
pages = {69--78},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a7/}
}
N. T. Anisimova. Divergent Fourier series with respect to orthonormalized systems of smooth functions. Matematičeskie zametki, Tome 20 (1976) no. 1, pp. 69-78. http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a7/