Approximation to the transcendental relationship of two algebraic points of the function $\wp(z)$ with complex multiplication
Matematičeskie zametki, Tome 20 (1976) no. 1, pp. 47-60
Cet article a éte moissonné depuis la source Math-Net.Ru
For fixed $\varepsilon>0$, the following inequality holds: $$ \Bigl|\frac uv-\beta\Bigr|>C\exp(-(\ln H)^{2+\varepsilon}) $$ for all numbers $\beta$ belonging to a field $K$ of finite degree over $Q$. The constant $C>0$ does not depend on beta. $H$ is the height of beta. $\wp(u)$ and $\wp(v)$ are algebraic numbers, and $u/v$ is a transcendental number. $\wp(z)$ is the Weierstrass function with complex multiplication and algebraic invariants. The proof is ineffective.
@article{MZM_1976_20_1_a5,
author = {N. D. Nagaev},
title = {Approximation to the transcendental relationship of two algebraic points of the function $\wp(z)$ with complex multiplication},
journal = {Matemati\v{c}eskie zametki},
pages = {47--60},
year = {1976},
volume = {20},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a5/}
}
TY - JOUR AU - N. D. Nagaev TI - Approximation to the transcendental relationship of two algebraic points of the function $\wp(z)$ with complex multiplication JO - Matematičeskie zametki PY - 1976 SP - 47 EP - 60 VL - 20 IS - 1 UR - http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a5/ LA - ru ID - MZM_1976_20_1_a5 ER -
N. D. Nagaev. Approximation to the transcendental relationship of two algebraic points of the function $\wp(z)$ with complex multiplication. Matematičeskie zametki, Tome 20 (1976) no. 1, pp. 47-60. http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a5/