On the congruence of the upper semilattices of recursively enumerable $m$-powers and tabular powers
Matematičeskie zametki, Tome 20 (1976) no. 1, pp. 19-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

We have proved that in the upper semilattice of recursively enumerable tabular powers the set of minimal powers has an upper bound differing from the total power.
@article{MZM_1976_20_1_a2,
     author = {S. S. Marchenkov},
     title = {On the congruence of the upper semilattices of recursively enumerable $m$-powers and tabular powers},
     journal = {Matemati\v{c}eskie zametki},
     pages = {19--26},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a2/}
}
TY  - JOUR
AU  - S. S. Marchenkov
TI  - On the congruence of the upper semilattices of recursively enumerable $m$-powers and tabular powers
JO  - Matematičeskie zametki
PY  - 1976
SP  - 19
EP  - 26
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a2/
LA  - ru
ID  - MZM_1976_20_1_a2
ER  - 
%0 Journal Article
%A S. S. Marchenkov
%T On the congruence of the upper semilattices of recursively enumerable $m$-powers and tabular powers
%J Matematičeskie zametki
%D 1976
%P 19-26
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a2/
%G ru
%F MZM_1976_20_1_a2
S. S. Marchenkov. On the congruence of the upper semilattices of recursively enumerable $m$-powers and tabular powers. Matematičeskie zametki, Tome 20 (1976) no. 1, pp. 19-26. http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a2/