On the congruence of the upper semilattices of recursively enumerable $m$-powers and tabular powers
Matematičeskie zametki, Tome 20 (1976) no. 1, pp. 19-26
Cet article a éte moissonné depuis la source Math-Net.Ru
We have proved that in the upper semilattice of recursively enumerable tabular powers the set of minimal powers has an upper bound differing from the total power.
@article{MZM_1976_20_1_a2,
author = {S. S. Marchenkov},
title = {On the congruence of the upper semilattices of recursively enumerable $m$-powers and tabular powers},
journal = {Matemati\v{c}eskie zametki},
pages = {19--26},
year = {1976},
volume = {20},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a2/}
}
S. S. Marchenkov. On the congruence of the upper semilattices of recursively enumerable $m$-powers and tabular powers. Matematičeskie zametki, Tome 20 (1976) no. 1, pp. 19-26. http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a2/