Estimate of the upper bound on the Gaussian curvature of certain surfaces with boundary
Matematičeskie zametki, Tome 20 (1976) no. 1, pp. 113-120
Cet article a éte moissonné depuis la source Math-Net.Ru
In this article it is shown that if S is a complete, regular (of class $C^4$) surface with geodesic boundary along which the normal curvature does not change sign, then the Gaussian curvature of the surface satisfies the condition: $\sup\limits_SK\ge0$.
@article{MZM_1976_20_1_a11,
author = {L. I. Vorob'eva},
title = {Estimate of the upper bound on the {Gaussian} curvature of certain surfaces with boundary},
journal = {Matemati\v{c}eskie zametki},
pages = {113--120},
year = {1976},
volume = {20},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a11/}
}
L. I. Vorob'eva. Estimate of the upper bound on the Gaussian curvature of certain surfaces with boundary. Matematičeskie zametki, Tome 20 (1976) no. 1, pp. 113-120. http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a11/